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Abstract

We cannot guarantee that training datasets are representative
of the distribution of inputs that will be encountered during
deployment. So we must have confidence that our models do
not over-rely on this assumption. To this end, we introduce
a new method that identifies context-sensitive feature pertur-
bations (e.g. shape, location, texture, colour) to the inputs of
image classifiers. We produce these changes by performing
small adjustments to the activation values of different layers
of a trained generative neural network. Perturbing at layers
earlier in the generator causes changes to coarser-grained fea-
tures; perturbations further on cause finer-grained changes.
Unsurprisingly, we find that state-of-the-art classifiers are not
robust to any such changes. More surprisingly, when it comes
to coarse-grained feature changes, we find that adversarial
training against pixel-space perturbations is not just unhelpful:
it is counterproductive.

1 Introduction
Deep learning models have proven to be powerful tools for
tasks including image classification (Touvron et al. 2020;
Xie et al. 2019), with the ability to automatically identify
useful features of their training images and combine these to
provide accurate label predictions (Olah et al. 2020). Under
the assumption that data are independently and identically
distributed (i.i.d.), they have shown a remarkable ability to
generalise to unseen inputs (Neyshabur et al. 2017). How-
ever, it is increasingly clear that the performance of these
models drops drastically without this assumption; optimis-
ing for i.i.d. accuracy alone results in models that are not
robust to even modest distributional shifts (Rosenfeld, Zemel,
and Tsotsos 2018; Jo and Bengio 2017; Geirhos et al. 2018;
Hendrycks and Dietterich 2019). This is concerning because
the non-static nature of the real world may well cause the
distribution of inputs to shift during deployment, and because
it is difficult for any finite training set to capture the full range
of inputs that may be encountered. A model’s lack of robust-
ness likely occurs due in part to over-reliance on non-robust
features that correlate well under the i.i.d. assumption but
stop providing useful information after a shift (Ilyas et al.
2019). Before deploying models, especially in safety-critical
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contexts, we must evaluate their robustness to possible un-
known shifts in the distribution of encountered inputs.

In this work, we introduce a new method that evaluates the
robustness of neural networks to changes that (a) are context-
sensitive perturbations to features that vary in the training
data and (b) vary in granularity as we choose. By ‘context-
sensitive’, we mean changes that are specific to the semantics
of the local objects in the image, such as object shape, posi-
tion, size, pose, colour and texture. By ‘granularity’, we mean
the scope of a change in the image: a coarse-grained change
affects a large region of the image, while the finest-grained
change possible is to a single pixel.

Why are these two properties desirable? We ultimately
want to evaluate robustness to changes that might plausibly
be encountered at deployment. For a given starting image,
most `p norm-constrained pixel perturbations result in an im-
age very unlikely to be encountered at deployment; the few
that are plausible are those that represent a context-sensitive
change to features in a way that has been seen in the training
data. For instance, a perturbation that lengthens a table by
darkening a contiguous region of the image is much more in-
teresting than almost all perturbations of a similar size to the
same pixels. Furthermore, by evaluating robustness to such
changes at different granularities, we can investigate whether
robustness in one respect improves or worsens robustness in
other respects.

We obtain context-sensitive changes to features by taking
a pre-trained generative neural network and perturbing its
latent activation values as it generates images. This works
because the neurons at different layers of a generator encode
the useful features for generating images (Bau et al. 2019).
We can control the granularity of the downstream change by
selecting the layers at which the activations are perturbed: per-
turbations to earlier layers result in coarser-grained changes
(e.g., the shape of a building), while later perturbations result
in finer-grained changes (e.g., the texture of a brick).

We use this method to evaluate the robustness of state-
of-the-art ImageNet classifiers to context-specific feature
perturbations of different granularities. Besides finding that
these models are not robust in this sense, we make the sur-
prising finding that using classifiers adversarially that were
trained to be robust to bounded pixel perturbations actually
decreases robustness to coarse-grained perturbations. This
may be because such classifiers must necessarily depend



(a) Original image. (b) Difference from perturbation. (c) Perturbed image.

Figure 1: An example of changing the computed classification from ‘volcano’ to target label ‘goldfish’ using context-sensitive
feature perturbations of all granularities. Coarser-grained changes include darkening the sky, causing an eruption of lava,
and adding a rocky outcrop in the foreground; finer-grained changes include slightly flattening the curve of the volcano, and
adjustments to the texture of the trees, rocks and cloud.

more on coarser-grained features of images than classifiers
optimised for accuracy on i.i.d. inputs, which tend to rely on
fine-grained features such as texture (Geirhos et al. 2019).
Our results strengthen and expand upon related findings from
Yin et al. (2019), who find that classifiers robust to pixel-
level perturbations are less robust to corruptions of certain
context-insensitive features such as artificial ‘fog’ and 2D
sinusoids.

2 Background
Robustness under distributional shift When training a
discriminative neural network, the goal is typically to min-
imise the expected loss E(x,y)∼P0

[l(x, y; θ)] with respect
to the model parameters θ, where P0 is the training distri-
bution over feature space X and labels in Y. In real-world
scenarios, however, we cannot depend on the distribution at
deployment remaining identical to P0 (i.e. we cannot rely
on the i.i.d. assumption). To ensure that models behave well
in practice, it is necessary to make distributionally robust
models: they should perform well even after a shift to their
input distribution. Studies have shown that there are many
possible shifts to which classifiers are not robust, motivating
a large body of literature which deals with identifying and
correcting these problems (Rosenfeld, Zemel, and Tsotsos
2018; Jo and Bengio 2017; Geirhos et al. 2018; Hendrycks
and Dietterich 2019; Amodei et al. 2016; Sinha, Namkoong,
and Duchi 2018; He, Shen, and Cui 2019).

Generative Adversarial Networks GANs are an ap-
proach to training generative neural networks that map from a
known standard probability distribution to the distribution of
the training data. See a tutorial for details (Goodfellow 2017).
While other types of generative networks exist, we focus on
the use of GANs in this work for their crispness. Generative
networks have been found to display an interesting property:
different layers, and even different neurons, encode different
kinds of features of the image. Earlier layers tend to encode
higher-level information about objects in the image, whereas

later layers deal more with “low-level materials, edges, and
colours” (Bau et al. 2019, p.7). In addition, it is possible
to vary features such as zoom, object position and rotation,
simply by moving the input to the model in a linear walk
(Jahanian, Chai, and Isola 2019).

3 Related Work
Measuring robustness This paper builds on a body of
work examining trained models’ robustness to a range of
changes. One approach is to apply a hand-selected range of
possible corruptions such as Gaussian noise or simulated ef-
fects such as fog or motion blur. Such robustness benchmarks
have been created for datasets including traffic signs (Temel
et al. 2017), ImageNet (Hendrycks and Dietterich 2019),
MNIST (Mu and Gilmer 2019) and Cityscapes (Michaelis
et al. 2019). Snoek et al. (2019) evaluate the robustness of the
calibration of classifiers’ confidences to rotated and translated
images, as well as to out-of-distribution inputs such as not-
MNIST (Bulatov 2011). Another approach is to gather new
data, either replicating original dataset creation processes
(Recht et al. 2019) or deliberately gathering data representing
a challenging shift in distribution (Hendrycks et al. 2019);
in both cases, classifiers were found to fail to generalise to
the new distributions. Our paper builds on the foundations
laid by these works, providing automaticity by evaluating
robustness to learnt features that are sensitive to the local
semantics.

Adversarial robustness There has been much recent work
on ‘adversarial examples’: inputs deliberately crafted by an
adversary to fool a model (Gilmer et al. 2018). In this lit-
erature, an attacker is modelled as having certain capabil-
ities to construct pathological inputs, while the ‘defender’
aims to create systems that are robustly correct to all in-
puts within this threat model. Such attacks can be viewed
as the worst-case distributional shift within the threat model.
The customary threat model is constrained perturbations to
the pixel values of a given image (Goodfellow, Shlens, and



Szegedy 2015), for which adversarial robustness does not
imply robustness to more meaningful changes that induce
large changes in pixel values. But there is a burgeoning in-
terest in new threat models that allow meaningful changes
to given images. While the purpose of our method is safety
(to evaluate models’ distributional robustness to plausible
shifts in the distribution of inputs), rather than to serve as
an adversarial attack for security evaluations, some existing
‘semantic attacks’ are related to our method.

Semantic adversarial robustness Initially, semantic ad-
versarial examples were constructed using context-insensitive
hand-coded methods that perturbed features such as colouring
(Hosseini and Poovendran 2018), rotations and translations
(Engstrom et al. 2019b), and corruptions such as blurring and
fog (Hendrycks and Dietterich 2019) in an ad-hoc manner.
Another possible approach, albeit prohibitively expensive
for most domains, is to write an invertible differentiable ren-
derer and perturb its parameters to effect semantic changes
in the scene (Liu et al. 2019; Jain et al. 2019). More recently,
context-sensitive methods have been proposed that use gener-
ative models to avoid the need to hand-code specific features.

Qiu et al. (2019) use a dataset labelled with various se-
mantic features to train a generative model that allows in-
puts determining these features to be adversarially adjusted.
Bhattad et al. (2019) utilise learnt colourisation and texture-
transfer models to identify worst-case changes to the colour
and texture of given images. Gowal et al. (2019) adversarially
compose disentangled learned representations of different in-
puts. Defense-GAN (Samangouei, Kabkab, and Chellappa
2018) is not an evaluation or attack, but an attempt to miti-
gate attacks by projecting onto the GAN’s learnt manifold.
Dunn et al. (2019) train a GAN to output a distribution of im-
ages that fools the target classifier. Three imaginative papers
construct semantic adversarial examples using some search
procedure to identify a suitable input to a trained generative
model (Zhao, Dua, and Singh 2017; Song et al. 2018; Wang
et al. 2020; Alzantot et al. 2018); Wong and Kolter (2020)
do likewise for a generator trained on already-perturbed data.
We build on the common theme: using a generative model
to learn meaningful context-specific semantic features. How-
ever, our method is the first to perturb the generator network’s
latent activations—not just the input. This leverages the full
range of granularities of feature representations learnt from
the training dataset, rather than just the maximally-coarse
semantics encoded in the input, allowing for a much richer
space of manipulations. Evidence of this richness is given in
our results.

4 Method
Suppose that we have a trained, differentiable image classifier
f : X → R|Y| whose robustness we would like to evaluate,
where X = R3×w×h is RGB pixel space and Y is the set of
class labels over which f outputs a confidence distribution.
Suppose that we also have a trained generator neural network
g : Z → X, which maps from a standard Gaussian distri-
bution over its input space Z = Rm to the distribution of
training images. Although we use the generator of a GAN, a

VAE or any other generative model would be equally suitable.
Since a feedforward network is a sequence of layers, we

can consider g to be a composition of functions g = gn ◦
gn−1 ◦ ... ◦ g1. For instance, in our main experiments, we
decompose BigGAN (Brock, Donahue, and Simonyan 2019)
into its residual blocks. Here, gi : Ai−1 → Ai is the ith
layer, taking activations ai−1 ∈ Ai−1 from the previous layer
and outputting the resulting activation tensor gi(ai−1) ∈ Ai.
Splitting in this way allow us to introduce a perturbation pi ∈
Ai to layer i’s activations, before continuing the forward pass
through the rest of the generator. Given such a perturbation
tensor pi ∈ Ai for each layer i, we can define perturbed
layer functions g′i(ai−1) = gi(ai−1) + pi. By performing
such perturbations at every activation space, we obtain the
perturbed output of the entire generator, g′(z; p0, ..., pn) =
(g′n ◦ g′n−1 ◦ ... ◦ g′1)(z + p0).

Suppose that we have sampled some generator input z,
and automatically determined the correct label y of its image
under the generator when unperturbed, g′(z; 0, ..., 0). This is
best done using a conditional generator that also takes a label
as input (Mirza and Osindero 2014), but can also be achieved
by assuming that the classifier’s initial output is correct. We
now need a procedure to identify suitable perturbation tensors
p∗ = (p∗0, ..., p

∗
n) ∈ A0 × . . .× An such that the classifier’s

output on g′(z; p∗) is not y but some other label, while the
true label of g′(z; p∗) remains y.

Ensuring misclassification We can define a loss function
` : R|Y| × Y→ R such that `(f(g′(z; p)), y) is minimised
when the classifier predicts any label but the correct y, or
such that `(f(g′(z; p)), t) is minimised when the classifier
incorrectly predicts target label t. There are many possibili-
ties, but in this paper we focus on the latter case only, using
`(f(x), t) = maxj∈Y f(x)j−f(x)t, the variant found to be
most effective by Carlini and Wagner (2017). Noting that `, f
and each g′i are differentiable, we use the usual backpropaga-
tion algorithm to compute the derivative of `(f(g′(z; p)), y)
with respect to p. We then use a gradient-descent optimisa-
tion over p to find a perturbation p∗ that minimises `. By
definition of `, this optimal p∗ will ensure that the classifier
mislabels perturbed image g′(z; p∗).

Ensuring the true label remains unchanged But we also
need the true label of g′(z; p∗) to remain y, else f might in
fact be predicting the correct label. Our approach is to assume
that small changes to an image will not change its correct
label (we verify this in our experiments). So we would like
to identify the smallest perturbation that induces the kind of
mislabelling we are investigating. The approach we take is
to constrain the maximum magnitude of the perturbation—
computed as the Euclidean norm of the vector obtained by
‘flattening’ and concatenating the perturbation tensors pi—
and gradually relaxing this constraint during optimisation
until a perturbation p∗ inducing the desired mislabelling is
found. The quicker the constraint is relaxed, the quicker a
mislabelling is found, but the larger the expected perturba-
tion.
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Figure 2: Illustration of a forward pass with perturbations to the latent activation values at n layers in the generator network.

Per-neuron perturbation scaling to promote uniformity
The typical activation values of separate neurons differ in
scale, even within a single layer. If one varies from −1 to 1,
while another varies from −0.1 to 0.1, then a perturbation of
magnitude 0.5 is likely to have quite different downstream
effects on the image depending on which of these neurons it
affects. To correct for this, we scale the perturbation for each
neuron to the empirically-measured range. That is, rather
than adding perturbation tensor pi directly to the activation
tensor at layer i, we add pi � σi, where � is element-wise
multiplication and σi is an empirically-measured tensor of
standard deviations of the activation values at layer i.

In future work, it may be desirable to further fine-tune
the scale of the perturbations applied to each neuron. In
the present work, however, the above scaling procedure is
sufficient to normalise the downstream effect of perturbing
different neurons; if it were insufficient, then too many of the
perturbed images would no longer be recognisable as their
original class.

5 Experimental Evaluation
In this section, we apply our method to evaluate the robust-
ness of state-of-the-art classifiers to context-specific feature
perturbations of different granularity. Primarily, we evaluate
ImageNet-1K classification (Russakovsky et al. 2015), per-
turbing the features learnt by a pre-trained BigGAN (Brock,
Donahue, and Simonyan 2019). We evaluate two standard
classifiers, and two ‘robust’ classifiers adversarially trained
against bounded pixel-space perturbations. First, the state-
of-the-art on ImageNet, EfficientNet-B4 with NoisyStudent
training (Xie et al. 2019). This was the highest-accuracy clas-
sifier for which pre-trained weights were available. Next, the
standard ResNet50 classifier (He et al. 2016). Finally, two
ResNet50 classifiers adversarially trained against pixel-space
perturbations: one from Engstrom et al. (2019a) trained using
an `2-norm PGD attack with radius ε = 0.3, and another from
Wong, Rice, and Kolter (2020), trained with the FGSM attack
for robustness against `∞ with ε = 4/255. See Appendix A
for further details.

We focus exclusively on targeted misclassifications, for
which a randomly predetermined target label t ∈ Y is chosen
for each input, since failure in this case implies significant
weakness. A classifier is more robust to a class of pertur-
bations if larger-magnitude perturbations of that kind are
required to induce the targeted classification. Recall that we

gradually relax the constraint on the magnitude of the per-
turbations to activation values: by measuring the smallest
magnitude for which the classifier outputs the target class
t, we can build a picture of how robust the model is to the
perturbations.

We cannot guarantee that the images originally produced
by BigGAN would be labelled by humans as their intended
class (GANs are imperfect), or that the perturbations do not
change the class of the image. The risk in making visible
and varied perturbations is that it becomes difficult to ensure
these not change the class. To eliminate these risks, we use
five independent human judges to vote on the class of the
images. As in the original ImageNet labelling protocol, a
majority is used to decide the label. It is also possible to
avoid human labelling, by fixing a maximum perturbation
magnitude—although this does introduce a trade-off between
false positives and negatives. See Appendix C for details.

Our experiments proceed as follows: we randomly gener-
ate an unperturbed image of class y; we skip this image if
the classifier does not predict class y to begin with. We ran-
domly select a target t, and find a perturbation which induces
this misclassification. Human labellers vote on whether the
unperturbed image is truly of class y; the image is skipped
if not. If the image is not skipped, the labellers who voted to
keep the unperturbed image vote on whether the perturbed
image is (still) of class y.

In this way, we obtain a set of correctly-classified unper-
turbed images paired with incorrectly-classified perturbed
counterparts for which we know both the perturbation mag-
nitude, and whether they were successful (maintained the
class of the image). We then evaluate robustness by looking
at how quickly the number of successful perturbations grows
as we allow for larger and larger perturbation magnitudes.
To evaluate robustness to changes to different feature gran-
ularities, we repeat this robustness analysis, but restrict the
perturbations to affect different subsets of layers. For full
details of our experiments, refer to Appendix B.

To demonstrate that our method readily generalises, we
also run our experiments on a smaller scale on two further
datasets. First, the much simpler (and correspondingly eas-
ier to robustly classify) MNIST dataset (LeCun, Cortes, and
Burges 1999), using one classifier optimised for i.i.d. accu-
racy, and one adversarially trained to be robust to an `2-norm
projected gradient descent attack with ε = 0.3. Then, an-
other high-resolution dataset: CelebA-HQ, with our method



(×10 for visibility) (×25 for visibility) (×5 for visibility)

(a) Unperturbed. (b) First six layers. (c) Middle six layers. (d) Last six layers. (e) All eighteen layers.

(×10 for visibility) (×25 for visibility) (×5 for visibility)

(f) Unperturbed. (g) First six layers. (h) Middle six layers. (i) Last six layers. (j) All eighteen layers.

(×10 for visibility) (×25 for visibility) (×5 for visibility)

(k) Unperturbed. (l) First six layers. (m) Middle six layers. (n) Last six layers. (o) All eighteen layers.

Figure 3: Context-sensitive feature perturbations at different granularities, as controlled by perturbing activations at the generator
layers indicated under each image. Differences with the unperturbed image are shown above each perturbed image. The perturbed
Pomeranians (dogs) are classified as ‘red king crabs’, the volcanos as ‘goldfish’, and redshanks (birds) as ‘rams’.



applied to a Progressive GAN (Karras et al. 2018).

Results
Table 1 reports the average magnitude of the misclassification-
inducing perturbations. Figure 4 elaborates on this, plotting
the relationships between perturbation magnitude and the
cumulative proportion of inputs for which this magnitude
(or smaller) is sufficient to cause the classifier to predict the
target label. For each type of perturbation, for each classifier,
192± 20 (minimum 158) unperturbed images were labelled
by the human judges, of which 53± 8 (max 69) images were
rejected by the majority for not matching the intended label.
Note that this latter quantity depends only on the pre-trained
generator, not our method. See above and Appendix B for
full details of our procedure.

Of course, even state-of-the-art GANs generate images that
are not photorealistic. But we note that photorealism from the
generative model is not necessary for our method. We want
to trust our classifiers to behave correctly on images that are
unambiguously of a certain class: all that is necessary is that
the generated images have this property. Our standard for
labelling is a majority vote among our five judges; all images
that meet this criterion yet are misclassified by a model are
weaknesses of the model.

Discussion of Results
Qualitative results The results in Figure 3 and Ap-
pendix D demonstrate a range of the context-specific feature
perturbations that our method produces, and shows that per-
turbations at different layers produce downstream changes of
different granularities. We are publishing the full dataset of
perturbed images used in our experiments; see Appendix D.

None of the classifiers are robust to any granularity of
perturbation Figure 6a shows that for all four classifiers,
our method finds misclassification-inducing perturbations for
over 80% of the initial generated images, even with relatively
small perturbation magnitudes. This result is consistent with
the notion that trained classifiers have learnt to rely on spu-
rious (or at least fragile) feature correlations that may not
generalise beyond the training regime. For instance, relying
on background colour to identify the foreground object may
work well if this correlation holds—as it would both dur-
ing normal i.i.d. training and adversarial training—but this
should not be relied upon at deployment.

Different generator layers encode meaningfully-different
features Since the results show that the classifiers behave
significantly differently when perturbations are restricted
to different groups of layers, the kinds of features being
changed must meaningfully differ. This is clear evidence
that perturbing intermediate activations offers a much richer
feature space than perturbing (say) the generator input only.

Pixel-space robustness improves robustness to finer-
grained perturbations The lower average magnitudes re-
quired for the pixel-robust classifiers when perturbing the
final six layers, as seen in the last column of Table 1 and the

Table 1: Mean magnitudes of misclassification-inducing per-
turbations, for different classifiers (rows) and different layers
in the generator at which activations are perturbed (columns).
Compare results within each column to compare robustness
to the same granularity of perturbation.

All layers First 6 Middle 6 Last 6

Engstrom 36 33 21 141
“Fast” 35 29 22 102
EfficientNet 36 97 22 24
ResNet50 4.2 89 4.2 7.4

correspondingly flatter curves in Figure 6d, demonstrate that
adversarial training generalises somewhat to confer robust-
ness to fine-grained feature perturbations. The slightly gentler
gradient at the beginning of Figure 6c suggests that this even
provides some limited robustness to small perturbations of
medium granularity. In both cases, this may be because the
changes fall within or nearby the pixel-space `p-norm ball
that the classifier is trained to be robust within.

But robustness to pixel-space perturbations is a double-
edged sword Perturbations to activations in the early lay-
ers of a generator induce context-sensitive, coarse-grained
changes to the features of an image. These have a large mag-
nitude when measured in pixel space, so it is unsurprising
that classifiers trained to be robust to norm-constrained pixel
perturbations do not have improved robustness to such fea-
ture perturbations. More surprisingly, Figure 6b and Table 1
show that pixel-space robustness in fact considerably wors-
ens robustness to the coarse-grained features encoded in the
first six generator layers. This may be because non-robust
standard classifiers ordinarily depend mainly on fine-grained
features such as texture (Geirhos et al. 2019). Conversely,
pixel-space robust classifiers have been trained to ignore
these fine-grained features, and so depend instead on coarse-
grained features. But they can still rely on fragile correlations
in the coarse-grained features, so their robustness to context-
sensitive coarse-grained feature perturbations is decreased.

There is already some evidence that classifiers optimised
for robustness to constrained adversarial pixel perturbations
seem to have decreased robustness to corruptions concen-
trated in the low-frequency Fourier domain (Yin et al. 2019),
decreased robustness to invariance-based attacks that change
the true label but maintain the model’s prediction (Tramèr
et al. 2020) and little robustness to various context-insensitive
corruptions not encountered at training time (Kang et al.
2019). Our finding that such models also have significantly
decreased robustness to coarse-grained context-sensitive fea-
ture perturbations strengthens and generalises these results.

MNIST The simplicity of the MNIST classification task
suggests that constructing a robust classifier for MNIST
should be significantly easier than for ImageNet. We find that
adversarial training against pixel perturbations does not im-
prove robustness to coarse-grained perturbations on MNIST,



(a) Activation values perturbed at all BigGAN layers. (b) Activation values perturbed in the first six layers only.

(c) Activations perturbed in the middle six layers only. (d) Activation values perturbed in the last six layers only.

Figure 4: Graphs showing how the cumulative proportion of perturbations that induce the targeted misclassification increases
with maximum perturbation magnitude. The steeper the line, the less robust the classifier to that perturbation type. The lines and
translucent areas shown are the means and standard deviations between several experiments of 30 images each.

but neither does it worsen it. This is likely because the sim-
plicity and low resolution of the dataset significantly reduces
the range of possible granularities, relative to ImageNet. See
Appendix F for results and discussion.

CelebA-HQ In Appendix E, we show that our method
also easily generalises to work for a pre-trained Progressive
GAN (Karras et al. 2018) on the CelebA-HQ dataset. This
neatly demonstrates that our method is general, in that it does
not depend on properties of any dataset or model.

Note that the results on ImageNet, CelebA-HQ, and
MNIST show that the method described in Section 4 is suf-
ficient. On all three we did no hyper-parameter tuning. We
used the obvious choice for where to make perturbations, and
did not tune size of the perturbations at each neuron.

6 Conclusion
Since the i.i.d. assumption cannot be relied upon during de-
ployment, it is necessary for our models to remain perfor-
mant when given inputs different from those in its training
distribution. In this paper, we have introduced a new method

that evaluates robustness of image classifiers to a rich class
of such inputs: by dynamically perturbing the intermediate
activation values of trained generative neural networks we
produce context-sensitive perturbations to meaningful learnt
features of different granularities. This allows evaluation of
robustness to changes varying from coarse-grained properties
such as object shape and colour (encoded in earlier layers) to
fine-grained edges and textures (encoded in later layers).

Perhaps unsurprisingly, we find that modern state-of-the-
art ImageNet classifiers are not robust to context-sensitive
features perturbations at any granularity. More surprisingly,
while classifiers optimised for robustness to `p norm-bounded
pixel perturbations are indeed more robust to fine-grained fea-
ture perturbations, this is to the detriment of their robustness
to coarse-grained feature perturbations. Besides the obvious
need for improved models, our findings motivate the need for
a deeper understanding of robustness of different kinds, and
more comprehensive meaningful evaluations of models. We
hope that the present work is a step in the right direction.



Ethics Statement
Our method produces context-dependent feature perturba-
tions of different granularities. We hope that this line of work
will eventually produce tools that can be used to thoroughly
evaluate the robustness of machine learning systems. This
would be extremely useful: we should only give such systems
responsibility when we are sure that we can rely on them to
behave well even if they are presented with inputs that do not
exactly match the kind they were trained on—an inevitability
in our ever-changing world.

But we should point out that although our method is a
very helpful step towards a thorough robustness evaluation,
it is currently insufficient. GANs are known to ‘drop modes’,
meaning that not all kinds of variation present in the training
data are learnt. Moreover, it certainly is not clear that all
kinds of variation to which we desire robustness can even in
principle be represented as perturbations to the intermediate
activations of a generator. Therefore, our method must be
viewed as one tool in a box of evaluation methods, and as
an invaluable step towards more comprehensive evaluations;
it must not be relied on by itself. We note also that even a
thorough robustness evaluation would be insufficient, since
there may be other necessary properties of models such as
maintaining privacy or fairness.

Generative modelling is well-known to be dual-use, in
the sense that generative models can be used for harmful as
well as beneficial purposes. For example, they can be used to
generate ‘deepfake’ videos that can deceive the viewer into
thinking something untrue on an important subject (Guera
and Delp 2018). Our work is not an advancement in gener-
ative modelling. Nor is it the first to identify that different
intermediate neurons control different meaningful features
of outputs (Bau et al. 2019). But this paper may draw more
attention to this true fact, which may be helpful to malicious
individuals creating harmful ‘deepfake’ videos. Given the
importance of understanding and mitigating robustness weak-
nesses in deep learning models, we believe that the benefits
of our work easily outweigh the costs.

In this paper, we find that robustness in the sense that
most contemporary work focuses on—that is, robustness
to `p norm-constrained pixel-space perturbations—is not
only insufficient for robustness against high-level meaningful
changes of the kind that might be encountered during deploy-
ment, but in fact worsens such robustness. It is important that
the research community and especially organisations deploy-
ing commercial deep learning applications take note. General
robustness is currently poorly understood, and very far from
being achieved in practice. We hope that our work leads to
more work in this area, and to more caution.
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A Model details
BigGAN
We use the BigGAN-deep generator architecture at the 512×
512 resolution, which can be found in Table 9 of Appendix B
in the paper introducing BigGAN (Brock, Donahue, and
Simonyan 2019). Conveniently, this table clearly indicates the
locations at which we perturb the activations; every horizontal
line of the table is a point at which our method can perturb the
activation values. Please refer to Appendix B of the BigGAN
paper for detailed descriptions, in particular of the ResBlocks
which comprise the majority of the network. Note that we in
essence perform perturbations after each ResBlock; if desired,
perturbations could also be performed within each block.
We take the pre-trained generator published by DeepMind
(DeepMind 2019).

Standard classifiers
We use two classifiers trained as usual to maximise accuracy
on the training distribution. The first is from the state-of-
the-art EfficientNet family (Tan and Le 2019), enhanced
using noisy student training (Xie et al. 2019). We use the
best readily available model and pre-trained weights for Py-
torch, EfficientNet-B4 (Noisy Student) from Melas-Kyriazi
(2020). The second is PyTorch’s pre-trained ResNet50 (He
et al. 2016), made available through the torchvision
package of PyTorch. These classifiers’ ImageNet accuracies
are reported in Table 2.

Table 2: Classifiers’ accuracy on ImageNet, in %

Classifier Top-1 Top-5

ResNet50 76.15 92.87
EfficientNet-B4 NS 85.16 97.47

Robust classifiers
We use two pre-trained ResNet50 classifiers adversari-
ally trained against bounded pixel perturbations. The first,
‘ResNet50 Robust (Engstrom)’, from Engstrom et al. (2019a),
was trained using l2-norm projected gradient descent attack
with ε = 0.3. The second, ‘ResNet50 Robust (“Fast”)’, from
Fast Is Better Than Free: Revisiting Adversarial Training
(Wong, Rice, and Kolter 2020), was trained with the fast
gradient sign method attack for robustness against l∞ with
ε = 4/255. The classifiers’ ImageNet accuracies and robust-
ness to relevant attacks are shown in Table 3.

B Experimental setup
Technical details
For our experiments, we used used the neural networks de-
scribed in Appendix A, and searched for context-sensitive
perturbations using the procedure described in Sections 4
and 5. However, those sections did not describe the optimisa-
tion procedure used. We used the Adam optimiser (Kingma
and Ba 2015) with a learning rate of 0.03 and the default β
hyperparameters of 0.9 and 0.999. After each optimisation



Table 3: Classifiers’ accuracy on ImageNet, and robustness to attacks, in %

Classifier
Top-1
(no attack)

Top-1
(l2 attack ε = 0.3)

Top-1
(l∞ attack ε = 4/255)

ResNet50 Robust (Engstrom) 57.90 35.16
ResNet50 Robust (“Fast”) 55.45 30.28

step, we constrained the magnitude of the perturbation by
finding the L2 norm of the perturbation ‘vector’ obtained
by concatenating the scalars used to perturb each individual
activation value, then rescaling it to have a norm no greater
than our constraint. This constraint was initially set to be
magnitude 1, and was slightly relaxed after each optimisation
step by multiplication by 1.03 and addition of 0.1. These
values were empirically found—using small amount of man-
ual experimentation—to be a reasonable tradeoff between
starting small and increasing slowly enough to find decently
small perturbations, while also using a reasonable amount of
compute. Typically, finding a perturbation under this regime
takesO(100) steps, which tookO(1 minute) using the single
NVIDIA Tesla V100 GPU we used.

Data collection
To run our ImageNet experiments, we began by randomly
sampling (y, z, t) tuples, where y is the desired true image
label, z is the latent input to the generator, and t is the target
label for the perturbed misclassification. For each classifier,
and each kind of perturbation, we calculated perturbations
based on each of these tuples. That is, with generator g, we
perturb the original image g(z; y) to be classified as t. These
same tuples were used for all of the experiments, although
the number of such tuples in each experiment varies slightly,
and can be seen in Table 4.

The images then go through two filters, and they are not
used if they fail to meet the requirements. Firstly, the classi-
fier’s prediction must be y, the label that was used to produce
the image. If not, then the classifier is already incorrect, and
so it is not worth perturbing the image to cause a misclassifi-
cation. Secondly, human labellers vote whether the original
image was actually of class y (this because generators are not
perfect, and so may fail at making an image of the intended
class). A majority vote is used, and images which are voted
to not be of the intended class are discarded. The majority
vote is similar to that used in the original ImageNet labelling
process.

Finally, human labellers are asked to determine whether
the perturbed image is of the same class as the original image,
i.e. if the perturbation successfully preserved the true class,
while changing the classifier’s predicted class. Again, this is
done by a majority vote.

The solid lines in Figure 4 show the final results. Note
that they do not always reach 1. This is because we consider
that if a perturbation changed the true class of an image, no
suitable perturbation was found.

We separate the images into several experiments of 30
images and report the mean and standard deviation over these
experiments.

Table 4: For each classifier, and for each section in which
we made perturbations, the number of images included in
our final results (Figure 4). This number does not include
examples for which the unperturbed image was judged by
labellers to be of the wrong class; this number is included in
parentheses.

ResNet 50
First 6 Middle 6 Last 6 All 18

148 (61) 147 (62) 148 (61) 148 (61)

EfficientNet-B4NS
First 6 Middle 6 Last 6 All 18

158 (54) 157 (55) 161 (52) 148 (49)

ResNet50 Robust ("Engstrom")
First 6 Middle 6 Last 6 All 18

136 (51) 137 (50) 138 (50) 133 (55)

ResNet50 Robust ("Fast")
First 6 Middle 6 Last 6 All 18
95 (69) 123 (43) 123 (43) 119 (39)

Labelling interface
For both the stages at which human labelling is required,
we use the interface shown in Figure 5. The user first la-
bels whether the original image is the of the intended label,
and then the perturbed image. We ask the user which of the
following four options is the best description of the image:

1. “This is an image of label y”

2. “This is an image of something else”

3. “It is unclear what this image shows”

4. “This is not an image of anything meaningful”

C Experiments with no human labelling
Our perturbation method, like any making large visual
changes to images, has the potential to change the true class
of the image. We tackled this problem by using human la-
bellers to identify the cases in which this happens. However,
it is also possible to use the standard approach of constrain-
ing the perturbation magnitude, to limit the visual change in
the final image. By setting an upper bound on the perturba-
tion magnitude, we are more constrained in the changes we



Figure 5: Screenshot of labelling interface. The perturbed image and buttons, on the right-hand side, are visible only when the
unperturbed image (on the left) has been selected as matching the desired label. The buttons are numbered to provide keyboard
shortcuts. The button at the bottom opens a web image search, in case the user is unfamiliar with the class label.

can make to images, but we also make fewer class-changing
perturbations. This allows us to avoid human labelling, by
accepting a small amount of error in the labels. The only way
to completely avoid this error would be to make changes that
cannot change the true class (very limiting), or have humans
label the images. Figure 6 demonstrates this tradeoff for our
ImageNet experiments.

D ImageNet: further examples
See Figures 7 and 8 below, which give examples of context-
sensitive feature perturbations.

Please also refer to the separate Multimedia Appendix,
which contains many more examples, and to the separate
Data Appendix, which includes animations showing the ef-
fect of gradually introducing the perturbations to the latent
activations of the generator. These give a much clearer intu-
ition for the nature of the changes being made to the images;
comparing static images alone can be difficult to interpret.



(a) Activation values perturbed at all BigGAN layers. (b) Activation values perturbed in the first six layers only.

(c) Activations perturbed in the middle six layers only. (d) Activation values perturbed in the last six layers only.

Figure 6: Number of class-changing perturbations for different upper bounds on perturbation magnitude, according to classifier,
and where the perturbation is being made.



ResNet50 ‘palace’→ ‘throne’
(×10 for visibility) (×25 for visibility) (×5 for visibility)

original first 6 layers middle 6 layers last 6 layers all 18 layers

EfficientNet-B4NS ‘palace’→ ‘throne’
(×10 for visibility) (×25 for visibility) (×5 for visibility)

original first 6 layers middle 6 layers last 6 layers all 18 layers

Figure 7: Examples of feature perturbations for the two standard classifiers. For each, the bottom row show the perturbed images
for perturbations at different parts of the generator. The top row shows the pixel-wise difference between the original image and
the perturbed image. Some of these have been scaled to be made more visible. The name of the classifier is shown in the top left,
and in the top right, the original and target label.



ResNet50 Robust (“Engstrom") ‘palace’→ ‘throne’

original first 6 layers middle 6 layers last 6 layers all 18 layers

ResNet50 Robust (“Fast") ‘palace’→ ‘throne’

original first 6 layers middle 6 layers last 6 layers all 18 layers

Figure 8: Examples of feature perturbations for the two pixel-robust classifiers. For each, the bottom row show the perturbed
images for perturbations at different parts of the generator. The top row shows the pixel-wise difference between the original
image and the perturbed image. The name of the classifier is shown in the top left, and in the top right, the original and target
label.



E CelebA-HQ
Model details
Progressive GAN We use the pretrained CelebA-HQ
512 × 512 Progressive GAN from https://pytorch.org/hub/
facebookresearch_pytorch-gan-zoo_pgan/. We simply per-
turb the activations after each ‘scaleLayer’ in this implemen-
tation. Note that unlike the other generative models we use,
this is not a conditional model. That is, its only input is the
random seed: you cannot specify that it generates an image
with certain characteristics.

Table 5 details the layers of the Progressive GAN, and
indicates which activations are perturbed.

Classifier CelebA is used primarily as benchmark
for generative modelling, not discriminative classifi-
cation. We could not find any pre-trained classifiers
for the 40 binary attributes that the dataset is labelled
with. In the absence of any suitable checkpoints, we
simply used existing code to train the classifier we
needed: https://github.com/aayushmnit/Deep_learning_
explorations/tree/master/7_Facial_attributes_fastai_opencv.
The resulting model obtains > 90% accuracy over the forty
binary labels, certainly good enough for our purpose of
demonstrating our method.

Experimental setup
CelebA is labelled with 40 binary attributes. It is very easy
to flip the prediction of just one of these attribute predictions,
but is difficult to flip all forty at once, if only because this is
a forty-objective optimisation problem; multi-objective op-
timisation is notoriously challenging. As a sensible middle
ground, we use our method to find context-sensitive pertur-
bations that flip the sign of ten of the forty attributes, since
210 = 1024, which is roughly the number of ImageNet
classes. In particular, because the generator is not conditional,
we cannot know which attribute predictions are correct. Our
approach is therefore to perturb each image so that all the
following labels are predicted positively: ‘Bald’, ‘Blond hair’,
‘Eyeglasses’, ‘Goatee’, ‘Grey hair’, ‘Moustache’, ‘No beard’,
‘Wearing hat’, ‘Wearing necklace’, and ‘Wearing necktie’.

Since the generator has ten layers, we demonstrate the
effects of perturbing the first four layers only, the next three
layers, the final three layers, and all ten layers at once. The
optimisation process required a modest amount of finetuning
(a few hours of ad-hoc manual experimentation); as noted
elsewhere, we perform no tuning of the layers selected to per-
turb at, or the relative scales of the perturbations at different
neurons. We use a learning rate of 0.1. No epsilon bound is
needed, since using this learning rate, the optimisation con-
verges suitably without it. To help with the multi-objective
optimisation, the logits are raised to the power of 1

10 , making
the gradients steeper for the constraints not yet satisfied, and
disincentivising further optimisation of the objectives already
satisfied.

We did not have the resources to have an independent
judge label these results, but we are satisfied by inspection
that the results are similar to the ImageNet results, in that the
large majority of perturbed images have not changed their

original labels. Note that this claim is not about the photoreal-
ism of the generated images—which depends mainly on the
generative model used—but on whether the perturbed images
are not generally either unrecognisable as faces, or perturbed
so that the predicted labels become accurate.

Results
We provide results in Figures 9, 10 and 11.

Please also refer to the separate Data Appendix to see
animations showing the effect of gradually introducing the
perturbations to the latent activations of the generator. These
give the viewer a much clearer intuition for the nature of the
changes being made to the images; using static comparisons
alone can be difficult to interpret.



Table 5: CelebA-HQ convolutional generator architecture. Each row represents a layer. Each horizontal rule marks an activation
tensor at which perturbations are performed.

Fully-Connected (8192 units)
LeakyReLU (Slope −0.2)
Reshape (To batch of 512× 4× 4 tensors)
2D Convolution (3× 3 kernel, stride 1, padding size 1, 512 feature maps)
LeakyReLU (Slope −0.2)

Upscale (To 8× 8)
2D Convolution (3× 3 kernel, stride 1, padding size 1, 512 feature maps)
LeakyReLU (Slope −0.2)
2D Convolution (3× 3 kernel, stride 1, padding size 1, 512 feature maps)
LeakyReLU (Slope −0.2)

Upscale (To 16× 16)
2D Convolution (3× 3 kernel, stride 1, padding size 1, 512 feature maps)
LeakyReLU (Slope −0.2)
2D Convolution (3× 3 kernel, stride 1, padding size 1, 512 feature maps)
LeakyReLU (Slope −0.2)

Upscale (To 32× 32)
2D Convolution (3× 3 kernel, stride 1, padding size 1, 512 feature maps)
LeakyReLU (Slope −0.2)
2D Convolution (3× 3 kernel, stride 1, padding size 1, 512 feature maps)
LeakyReLU (Slope −0.2)

Upscale (To 64× 64)
2D Convolution (3× 3 kernel, stride 1, padding size 1, 256 feature maps)
LeakyReLU (Slope −0.2)
2D Convolution (3× 3 kernel, stride 1, padding size 1, 256 feature maps)
LeakyReLU (Slope −0.2)

Upscale (To 128× 128)
2D Convolution (64× 64 kernel, stride 1, padding size 1, 128 feature maps)
LeakyReLU (Slope −0.2)
2D Convolution (3× 3 kernel, stride 1, padding size 1, 128 feature maps)
LeakyReLU (Slope −0.2)

Upscale (To 256× 256)
2D Convolution (3× 3 kernel, stride 1, padding size 1, 64 feature maps)
LeakyReLU (Slope −0.2)
2D Convolution (3× 3 kernel, stride 1, padding size 1, 64 feature maps)
LeakyReLU (Slope −0.2)

Upscale (To 512× 512)
2D Convolution (3× 3 kernel, stride 1, padding size 1, 32 feature maps)
LeakyReLU (Slope −0.2)
2D Convolution (3× 3 kernel, stride 1, padding size 1, 32 feature maps)
LeakyReLU (Slope −0.2)

2D Convolution (1× 1 kernel, stride 1, 3 feature maps)
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Figure 9: A random selection of context-sensitive feature perturbations at different granularities, as controlled by perturbing
activations at the generator layers indicated under each image. Differences with the unperturbed image are shown above each
perturbed image. Each perturbed image has the following labels predicted positively: ‘Bald’, ‘Blond hair’, ‘Eyeglasses’, ‘Goatee’,
‘Grey hair’, ‘Moustache’, ‘No beard’, ‘Wearing hat’, ‘Wearing necklace’, and ‘Wearing necktie’.



(×5 for visibility) (×10 for visibility)

(×5 for visibility) (×10 for visibility)

(×5 for visibility) (×10 for visibility)

Figure 10: A random selection of context-sensitive feature perturbations at different granularities, as controlled by perturbing
activations at the generator layers indicated under each image. Differences with the unperturbed image are shown above each
perturbed image. Each perturbed image has the following labels predicted positively: ‘Bald’, ‘Blond hair’, ‘Eyeglasses’, ‘Goatee’,
‘Grey hair’, ‘Moustache’, ‘No beard’, ‘Wearing hat’, ‘Wearing necklace’, and ‘Wearing necktie’.
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Figure 11: A random selection of context-sensitive feature perturbations at different granularities, as controlled by perturbing
activations at the generator layers indicated under each image. Differences with the unperturbed image are shown above each
perturbed image. Each perturbed image has the following labels predicted positively: ‘Bald’, ‘Blond hair’, ‘Eyeglasses’, ‘Goatee’,
‘Grey hair’, ‘Moustache’, ‘No beard’, ‘Wearing hat’, ‘Wearing necklace’, and ‘Wearing necktie’.



F MNIST
Model details
MNIST convolutional GAN For MNIST, we tried a range
of generators and found that they all worked roughly as well
as one another. For the experiments, we use a simple con-
volutional generator, inspired by the Deep Convolutional
GAN (Radford, Metz, and Chintala 2016). Details are shown
in Table 6. Inputs to the generator are drawn from a 128-
dimensional standard Gaussian. The sigmoid output transfor-
mation ensures that pixels are in the range [0, 1], as expected
by the classifiers. We perform context-sensitive perturbations
before ReLU layers, rather than after, to prevent ReLU out-
put values from being perturbed to become negative, which
would not have been encountered during training and so may
not result in plausible images being generated since they are
out-of-distribution for the rest of the generator. Note that
perturbing before and after the sigmoid transformation has
different effects because perturbations to values not close to
0 are diminished in magnitude if passed through the sigmoid
function.

Classifiers We use two neural networks that classify
MNIST. One is a simple standard classifier with two con-
volutional layers and three fully-connected layers, trained to
give an accuracy over 99%. The other is an LeNet5 classifier
adversarially trained against l2-norm bounded perturbations
for ε = 0.3. This was trained using the AdverTorch library
(Ding, Wang, and Jin 2019). It has a standard accuracy of
98%, reduced to 95% by an l2-norm bounded attack with
ε = 0.3.

Experimental setup
We find context-sensitive feature perturbations as described
for ImageNet in Appendix B, with a few differences. First,
since the generator is much smaller, we divide it nearly in
half, comparing the effect of perturbing the activation values
at first four layers only with the effect of perturbing at the last
four layers only. Second, because MNIST (and the generator)
is much smaller, so are the perturbation magnitudes required.
So the learning rate is reduced to 0.004, the we start with an
initial perturbation magnitude constraint of 0.1, and this is
gradually relaxed after each optimisation step by increasing
this upper bound by 0.001. The procedure for collecting
human judgements is as described in Appendix B.

Results and discussion
Figure 12 shows the robustness of the two classifiers to the
two kinds of context-sensitive perturbation. We can see from
Figure 12b that the classifier trained to be robust to pixel-
space perturbations is indeed more robust than the standard
classifier, with its considerably shallower slope indicating
that a bigger perturbation magnitude is required to the finer-
grained features encoded in the last four layers of the genera-
tor.

Conversely, Figure 12a gives an almost-identical shape for
both classifiers, indicating that adversarial training against
pixel-space perturbations does not confer any robustness to
the coarse-grained feature perturbations being evaluated here.

Table 6: MNIST convolutional generator architecture. Each
row represents a layer. Each horizontal rule marks an activa-
tion tensor at which perturbations are performed.

Fully-Connected (64 units)

ReLU
Transposed Convolution (5×5 kernel, 2×2 stride,

32 feature maps)

Batch Normalisation
Leaky ReLU (Slope −0.2)
Dropout (p = 0.35)
Transposed Convolution (5×5 kernel, 2×2 stride,

8 feature maps)

Batch Normalisation
Leaky ReLU (Slope −0.2)
Dropout (p = 0.35)
Transposed Convolution (5×5 kernel, 2×2 stride,

4 feature maps)

Batch Normalisation
Leaky ReLU (Slope −0.2)
Dropout (p = 0.35)
Fully-Connected (784 units)

Sigmoid (tanh used during train-
ing)

This has an interesting relationship with our main finding,
that adversarial training against pixel-space perturbations
seriously harms robustness to high-level context-sensitive
features perturbations on ImageNet. The difference can likely
be best explained by the great difference in datasets. The
dimensionality of ImageNet is over 1000× greater, and the
high-level feature space of MNIST is trivially small in com-
parison. The result of this is that in some loose sense, there is
a smaller ‘gap’ between the highest- and lowest-granularity
features encoded in the generator; put another way, there is
a much less rich space of coarse-grained context-sensitive
features that a classifier must be robust to on MNIST.

Whether this is the correct intuition, the implications of
our finding remains clear: even on the very simplest datasets,
robustness to fine-grained features completely fails to gener-
alise to coarser-grained features. If we are to obtain classifiers
that we can trust to generalise under modest distributional
shifts, there is still far to go.



(a) Generator activations perturbed at first 4 layers only.

(b) Generator activations perturbed at last 4 layers only.

Figure 12: Graphs showing how the proportion of perturba-
tions that induce the targeted misclassification increases with
perturbation magnitude. These should be interpreted in the
same way as Figure 4. The solid lines exclude the perturbed
images for which a human judges that the perturbation does
not change the true label of the image; the dotted lines, for
reference, include these.

Figure 13: Random sample of context-sensitive perturbations
targeting label 0. Only the first four layers of generator ac-
tivations are perturbed, and the classifier is trained using a
standard training procedure. In each pair, the perturbed image
is to the right of the unperturbed image.

Figure 14: Random sample of context-sensitive perturbations
targeting label 0. Only the first four layers of generator ac-
tivations are perturbed, and the classifier is trained using
adversarial training. In each pair, the perturbed image is to
the right of the unperturbed image.

Figure 15: Random sample of context-sensitive perturbations
targeting label 0. Only the last four layers of generator ac-
tivations are perturbed, and the classifier is trained using a
standard training procedure. In each pair, the perturbed image
is to the right of the unperturbed image.

Figure 16: Random sample of context-sensitive perturbations
targeting label 0. Only the last four layers of generator ac-
tivations are perturbed, and the classifier is trained using
adversarial training. In each pair, the perturbed image is to
the right of the unperturbed image.


